Molecular distances determined with resonant vibrational energy transfers.

نویسندگان

  • Hailong Chen
  • Xiewen Wen
  • Jiebo Li
  • Junrong Zheng
چکیده

In general, intermolecular distances in condensed phases at the angstrom scale are difficult to measure. We were able to do so by using the vibrational energy transfer method, an ultrafast vibrational analogue of Förster resonance energy transfer. The distances among SCN(-) anions in KSCN crystals and ion clusters of KSCN aqueous solutions were determined with the method. In the crystalline samples, the closest anion distance was determined to be 3.9 ± 0.3 Å, consistent with the XRD result. In the 1.8 and 1 M KSCN aqueous solutions, the anion distances in the ion clusters were determined to be 4.4 ± 0.4 Å. The clustered anion distances in aqueous solutions are very similar to the closest anion distance in the KSCN crystal but significantly shorter than the average anion distance (0.94-1.17 nm) in the aqueous solutions if ion clustering did not occur. The result suggests that ions in the strong electrolyte aqueous solutions can form clusters inside of which they have direct contact with each other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonresonant and resonant mode-specific intermolecular vibrational energy transfers in electrolyte aqueous solutions.

The donor/acceptor energy mismatch and vibrational coupling strength dependences of interionic vibrational energy transfer kinetics in electrolyte aqueous solutions were investigated with ultrafast multiple-dimensional vibrational spectroscopy. An analytical equation derived from the Fermi's Golden rule that correlates molecular structural parameters and vibrational energy transfer kinetics was...

متن کامل

Control of cellular processes by the coupling of resonant energy to hydrogen transfer reactions. I. Application to enzyme mechanisms.

A hypothesis is presented that electronic and vibrational resonant energy states are important in biochemical reactions due to their coupling to hydrogen transfer reactions. The hypothesis is based upon (1) the involvement of hydrogen in most biochemical reactions, (2) the unique abiity of hydrogen to act as an energy trap for resonant energy and (3) demonstrations of the coupling of resonant e...

متن کامل

Intermolecular vibrational energy transfers in liquids and solids.

Resonant and nonresonant intermolecular vibrational energy transfers in KSCN/KSC(13)N/KS(13)C(15)N aqueous and DMF solutions and crystals are studied. Both energy-gap and temperature dependent measurements reveal some surprising results, e.g. inverted energy-gap dependent energy transfer rates and opposite temperature dependences of resonant and nonresonant energy transfer rates. Two competing ...

متن کامل

Comparison Studies on Sub-Nanometer-Sized Ion Clusters in Aqueous Solutions: Vibrational Energy Transfers, MD Simulations, and Neutron Scattering.

In this work, MD simulations with two different force fields, vibrational energy relaxation and resonant energy transfer experiments, and neutron scattering data are used to investigate ion pairing and clustering in a series of GdmSCN aqueous solutions. The MD simulations reproduce the major features of neutron scattering experimental data very well. Although no information about ion pairing or...

متن کامل

The Correlation between Molecular Graph Properties and Vibrational Frequencies

It seems that the general applicability of the quantum theory of atoms in molecules (QTAIM) oncharacterizing the bonded interactions is still questionable even afier 30 years since its formulation. Fordemonstrating the generality of bonding schemes in QTA IM, ea( isomers were chosen as the modelsystems and the results from molecular charge density analysis and vibrational normal modes werecompa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 118 13  شماره 

صفحات  -

تاریخ انتشار 2014